Introduction to Data Mining with R1

Yanchang Zhao
http://www.RDataMining.com

Statistical Modelling and Computing Workshop at Geoscience Australia

8 May 2015

1Presented at AusDM 2014 (QUT, Brisbane) in Nov 2014, at Twitter (US) in Oct 2014, at UJAT (Mexico) in Sept 2014, and at University of Canberra in Sept 2013
Questions

- Do you know data mining and its algorithms and techniques?
Questions

- Do you know data mining and its algorithms and techniques?
- Have you heard of R?
Questions

- Do you know data mining and its algorithms and techniques?
- Have you heard of R?
- Have you ever used R in your work?
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
What is R?

- R is a free software environment for statistical computing and graphics.
- R can be easily extended with 6,600+ packages available on CRAN (as of May 2015).
- Many other packages provided on Bioconductor, R-Forge, GitHub, etc.
- R manuals on CRAN
 - An Introduction to R
 - The R Language Definition
 - R Data Import/Export
 - ...

2 http://www.r-project.org/
3 http://cran.r-project.org/
4 http://www.bioconductor.org/
5 http://r-forge.r-project.org/
6 https://github.com/
7 http://cran.r-project.org/manuals.html
Why R?

- R is widely used in both academia and **industry**.
- R was ranked no. 1 in the KDnuggets 2014 poll on *Top Languages for analytics, data mining, data science*\(^8\) (actually, no. 1 in 2011, 2012 & 2013!).
- The CRAN Task Views\(^9\) provide collections of packages for different tasks.
 - Machine learning & statistical learning
 - Cluster analysis & finite mixture models
 - Time series analysis
 - Multivariate statistics
 - Analysis of spatial data
 - . . .

\(^9\) http://cran.r-project.org/web/views/
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
Classification with R

- Decision trees: \textit{rpart}, \textit{party}
- Random forest: \textit{randomForest}, \textit{party}
- SVM: \textit{e1071}, \textit{kernlab}
- Neural networks: \textit{nnet}, \textit{neuralnet}, \textit{RSNNS}
- Performance evaluation: \textit{ROCR}
The Iris Dataset

iris data
str(iris)

'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1..
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0..
$ Species : Factor w/ 3 levels "setosa","versicolor",...

split into training and test datasets
set.seed(1234)
ind <- sample(2, nrow(iris), replace=T, prob=c(0.7, 0.3))
iris.train <- iris[ind==1,]
iris.test <- iris[ind==2,]
build a decision tree

```r
library(party)
iris.formula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris.ctree <- ctree(iris.formula, data=iris.train)
```
plot(iris.ctree)
predict on test data

```r
pred <- predict(iris.ctree, newdata = iris.test)
# check prediction result
table(pred, iris.test$Species)
```

```r
##
## pred setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 12 2
## virginica 0 0 14
```
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
Clustering with R

- \textit{k}-means: \textit{kmeans()}, \textit{kmeansruns()}\(^{10}\)
- \textit{k}-medoids: \textit{pam()}, \textit{pamk()}
- Hierarchical clustering: \textit{hclust()}, \textit{agnes()}, \textit{diana()}
- DBSCAN: \textit{fpc}
- BIRCH: \textit{birch}
- Cluster validation: packages \textit{clv}, \textit{clValid}, \textit{NbClust}

\(^{10}\)Functions are followed with “()”, and others are packages.
k-means Clustering

```r
set.seed(8953)
iris2 <- iris
# remove class IDs
iris2$Species <- NULL
# k-means clustering
iris.kmeans <- kmeans(iris2, 3)
# check result
table(iris$Species, iris.kmeans$cluster)
```

```
##
##  1 2 3
## setosa 0 50 0
## versicolor 2 0 48
## virginica 36 0 14
```
plot clusters and their centers
plot(iris2[, c("Sepal.Length", "Sepal.Width")], col=iris.kmeans$cluster)
points(iris.kmeans$centers[, c("Sepal.Length", "Sepal.Width")],
col=1:3, pch="*", cex=5)
Density-based Clustering

library(fpc)
iris2 <- iris[-5] # remove class IDs
DBSCAN clustering
ds <- dbscan(iris2, eps = 0.42, MinPts = 5)
compare clusters with original class IDs
table(ds$cluster, iris$Species)

##
setosa versicolor virginica
0 2 10 17
1 48 0 0
2 0 37 0
3 0 3 33
1-3: clusters; 0: outliers or noise

```r
plotcluster(iris2, ds$cluster)
```
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
Association Rule Mining with R

- Association rules: `apriori()`, `eclat()` in package `arules`
- Sequential patterns: `arulesSequence`
- Visualisation of associations: `arulesViz`
The Titanic Dataset

```r
load("./data/titanic.raw.rdata")
dim(titanic.raw)

## [1] 2201  4

idx <- sample(1:nrow(titanic.raw), 8)
titanic.raw[idx, , ]

##      Class  Sex       Age Survived
## 501    3rd Male Adult  No
## 477    3rd Male Adult  No
## 674    3rd Male Adult  No
## 766 Crew Male Adult  No
## 1485   3rd Female Adult No
## 1388   2nd Female Adult No
## 448    3rd Male Adult  No
## 590    3rd Male Adult  No
```
find association rules with the APRIORI algorithm
library(arules)
rules <- apriori(titanic.raw, control=list(VERBOSE=F),
 parameter=list(minlen=2, supp=0.005, conf=0.8),
 appearance=list(rhs=c("Survived=No", "Survived=Yes"),
 default=lhs))

sort rules
quality(rules) <- round(quality(rules), digits=3)
rules.sorted <- sort(rules, by="lift")

have a look at rules
inspect(rules.sorted)
<table>
<thead>
<tr>
<th>#</th>
<th>lhs</th>
<th>rhs</th>
<th>support</th>
<th>confidence</th>
<th>lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${\text{Class}=2\text{nd}, \text{Age}=\text{Child}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.011</td>
<td>1.000</td>
<td>3.096</td>
</tr>
<tr>
<td>2</td>
<td>${\text{Class}=2\text{nd}, \text{Sex}=\text{Female}, \text{Age}=\text{Child}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.006</td>
<td>1.000</td>
<td>3.096</td>
</tr>
<tr>
<td>3</td>
<td>${\text{Class}=1\text{st}, \text{Sex}=\text{Female}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.064</td>
<td>0.972</td>
<td>3.010</td>
</tr>
<tr>
<td>4</td>
<td>${\text{Class}=1\text{st}, \text{Sex}=\text{Female}, \text{Age}=\text{Adult}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.064</td>
<td>0.972</td>
<td>3.010</td>
</tr>
<tr>
<td>5</td>
<td>${\text{Class}=2\text{nd}, \text{Sex}=\text{Male}, \text{Age}=\text{Adult}}$</td>
<td>${\text{Survived}=\text{No}}$</td>
<td>0.070</td>
<td>0.917</td>
<td>1.354</td>
</tr>
<tr>
<td>6</td>
<td>${\text{Class}=2\text{nd}, \text{Sex}=\text{Female}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.042</td>
<td>0.877</td>
<td>2.716</td>
</tr>
<tr>
<td>7</td>
<td>${\text{Class}=\text{Crew}, \text{Sex}=\text{Female}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.009</td>
<td>0.870</td>
<td>2.692</td>
</tr>
<tr>
<td>8</td>
<td>${\text{Class}=\text{Crew}, \text{Sex}=\text{Female}, \text{Age}=\text{Adult}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.009</td>
<td>0.870</td>
<td>2.692</td>
</tr>
<tr>
<td>9</td>
<td>${\text{Class}=2\text{nd}, \text{Sex}=\text{Male}}$</td>
<td>${\text{Survived}=\text{No}}$</td>
<td>0.070</td>
<td>0.860</td>
<td>1.271</td>
</tr>
<tr>
<td>10</td>
<td>${\text{Class}=2\text{nd}, \text{Sex}=\text{Female}, \text{Age}=\text{Adult}}$</td>
<td>${\text{Survived}=\text{Yes}}$</td>
<td>0.042</td>
<td>0.877</td>
<td>2.716</td>
</tr>
</tbody>
</table>
```r
library(arulesViz)
plot(rules, method = "graph")
```
Outline

Introduction
Classification with R
Clustering with R
Association Rule Mining with R
Text Mining with R
Time Series Analysis with R
Social Network Analysis with R
R and Big Data
Online Resources
Text Mining with R

- Text mining: \textit{tm}
- Topic modelling: \textit{topicmodels, lda}
- Word cloud: \textit{wordcloud}
- Twitter data access: \textit{twitteR}
Retrieve Tweets

Retrieve recent tweets by @RDataMining

```r
## Option 1: retrieve tweets from Twitter
library(twitteR)
tweets <- userTimeline("RDataMining", n = 3200)
## Option 2: download @RDataMining tweets from RDataMining.com
url <- "http://www.rdatamining.com/data/rdmTweets.RData"
download.file(url, destfile = ".:/data/rdmTweets.RData"
## load tweets into R
load(file = ".:/data/rdmTweets.RData"
(n.tweet <- length(tweets))

## [1] 320
strwrap(tweets[[320]]$text, width = 55)
## [1] "An R Reference Card for Data Mining is now available"
## [2] "on CRAN. It lists many useful R functions and packages"
## [3] "for data mining applications."
```
library(tm)
convert tweets to a data frame
df <- twListToDF(tweets)
build a corpus
myCorpus <- Corpus(VectorSource(df$text))
convert to lower case
myCorpus <- tm_map(myCorpus, tolower)
remove punctuations and numbers
myCorpus <- tm_map(myCorpus, removePunctuation)
myCorpus <- tm_map(myCorpus, removeNumbers)
remove URLs, 'http' followed by non-space characters
removeURL <- function(x) gsub("http\[^[:space:]]\)*", ",", x)
myCorpus <- tm_map(myCorpus, removeURL)
remove 'r' and 'big' from stopwords
myStopwords <- setdiff(stopwords("english"), c("r", "big"))
remove stopwords
myCorpus <- tm_map(myCorpus, removeWords, myStopwords)
Stemming

```r
# keep a copy of corpus
myCorpusCopy <- myCorpus
# stem words
myCorpus <- tm_map(myCorpus, stemDocument)
# stem completion
myCorpus <- tm_map(myCorpus, stemCompletion,
                   dictionary = myCorpusCopy)
# replace "miners" with "mining", because "mining" was
# first stemmed to "mine" and then completed to "miners"
myCorpus <- tm_map(myCorpus, gsub, pattern="miners",
                   replacement="mining")
strwrap(myCorpus[320], width=55)

## [1] "r reference card data mining now available cran list"
## [2] "used r functions package data mining applications"
```
myTdm <- TermDocumentMatrix(myCorpus,
 control=list(wordLengths=c(1,Inf)))

inspect frequent words
(freq.terms <- findFreqTerms(myTdm, lowfreq=20))

[1] "analysis" "big" "computing" "data" ..
[5] "examples" "mining" "network" "package" ..
[9] "position" "postdoctoral" "r" "research"..
[13] "slides" "social" "tutorial" "university..
[17] "used"
which words are associated with 'r'?

```r
findAssocs(myTdm, "r", 0.2)
```

```r
## r
## examples 0.32
## code 0.29
## package 0.20
```

which words are associated with 'mining'?

```r
findAssocs(myTdm, "mining", 0.25)
```

```r
## mining
## data 0.47
## mahout 0.30
## recommendation 0.30
## sets 0.30
## supports 0.30
## frequent 0.26
## itemset 0.26
```
library(graph)
library(Rgraphviz)
plot(myTdm, term=freq.terms, corThreshold=0.1, weighting=T)
library(wordcloud)

m <- as.matrix(myTdm)

freq <- sort(rowSums(m), decreasing=T)

wordcloud(words=names(freq), freq=freq, min.freq=4, random.order=F)
library(topicmodels)
set.seed(123)
myLda <- LDA(as.DocumentTermMatrix(myTdm), k=8)
terms(myLda, 5)

Topic 1 Topic 2 Topic 3 Topic 4
[1,] "mining" "data" "r" "position"
[2,] "data" "free" "examples" "research"
[3,] "analysis" "course" "code" "university"
[4,] "network" "online" "book" "data"
[5,] "social" "ausdm" "mining" "postdoctoral"

Topic 5 Topic 6 Topic 7 Topic 8
[1,] "data" "data" "r" "r"
[2,] "r" "scientist" "package" "data"
[3,] "mining" "research" "computing" "clustering"
[4,] "applications" "r" "slides" "mining"
[5,] "series" "package" "parallel" "detection"
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
Time Series Analysis with R

- Time series decomposition: `decomp()`, `decompose()`, `arima()`, `stl()`
- Time series forecasting: `forecast`
- Time Series Clustering: `TSclust`
- Dynamic Time Warping (DTW): `dtw`
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
Social Network Analysis with R

- Packages: `igraph, sna`
- Centrality measures: `degree()`, `betweenness()`, `closeness()`, `transitivity()`
- Clusters: `clusters()`, `no.clusters()`
- Cliques: `cliques()`, `largest.cliques()`, `maximal.cliques()`, `clique.number()`
- Community detection: `fastgreedy.community()`, `spinglass.community()`
- Graph database Neo4j: package `RNeo4j`

 http://nicolewhite.github.io/RNeo4j/
Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
R and Big Data Platforms

▶ Hadoop
 ▶ Hadoop (or YARN) - a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models
 ▶ R Packages: RHadoop, RHIPE

▶ Spark
 ▶ Spark - a fast and general engine for large-scale data processing, which can be 100 times faster than Hadoop
 ▶ SparkR - R frontend for Spark

▶ H2O
 ▶ H2O - an open source in-memory prediction engine for big data science
 ▶ R Package: h2o

▶ MongoDB
 ▶ MongoDB - an open-source document database
 ▶ R packages: rmongodb, RMongo
R and Hadoop

- Packages: *RHadoop, RHive*
- RHadoop\(^{11}\) is a collection of R packages:
 - *rmr2* - perform data analysis with R via MapReduce on a Hadoop cluster
 - *rhdfs* - connect to Hadoop Distributed File System (HDFS)
 - *rhbase* - connect to the NoSQL HBase database
 - ...
- You can play with it on a single PC (in standalone or pseudo-distributed mode), and your code developed on that will be able to work on a cluster of PCs (in full-distributed mode)!
- Step-by-Step Guide to Setting Up an R-Hadoop System

\(^{11}\)https://github.com/RevolutionAnalytics/RHadoop/wiki
library(rmr2)
map <- function(k, lines) {
 words.list <- strsplit(lines, "\\s")
 words <- unlist(words.list)
 return(keyval(words, 1))
}
reduce <- function(word, counts) {
 keyval(word, sum(counts))
}
wordcount <- function(input, output = NULL) {
 mapreduce(input = input, output = output, input.format = "text",
 map = map, reduce = reduce)
}
 ## Submit job
out <- wordcount(in.file.path, out.file.path)

\[\text{From Jeffrey Breen’s presentation on Using R with Hadoop}\]

Outline

Introduction

Classification with R

Clustering with R

Association Rule Mining with R

Text Mining with R

Time Series Analysis with R

Social Network Analysis with R

R and Big Data

Online Resources
Online Resources

- RDataMining website: http://www.rdatamining.com
 - R Reference Card for Data Mining
 - RDataMining Slides Series
 - R and Data Mining: Examples and Case Studies
- RDataMining Group on LinkedIn (12,000+ members)
 http://group.rdatamining.com
- RDataMining on Twitter (2,000+ followers)
 @RDataMining
- Free online courses
 http://www.rdatamining.com/resources/courses
- Online documents
 http://www.rdatamining.com/resources/onlinedocs
The End

Thanks!

Email: yanchang(at)rdatamining.com