Hadoop, Spark and R

Yanchang Zhao
RDataMining.com

The La Trobe EoY Analytics Symposium 2016
La Trobe University, Melbourne

17 November 2016
Outline

Introduction

Hadoop

Spark

R and Big Data

Set Up a Hadoop/Spark Cluster

Online Resources
Big Data

- Volume: amount of data; from Terabytes to Petabytes
- Velocity: speed of data in and out; real time
- Variety: range of data types and sources; text, images, audio, video

1https://en.wikipedia.org/wiki/Big_data
Big Data

- Volume: amount of data; from Terabytes to Petabytes
- Velocity: speed of data in and out; real time
- Variety: range of data types and sources; text, images, audio, video
- Variability: inconsistency of data
- Veracity: quality of data

1https://en.wikipedia.org/wiki/Big_data
Outline

Introduction

Hadoop

Spark

R and Big Data

Set Up a Hadoop/Spark Cluster

Online Resources
Hadoop

- Apache Hadoop is a framework for running applications on large cluster built of commodity hardware.
- Hadoop implements a computational paradigm named MapReduce, where the application is divided into many small fragments of work, each of which may be executed or re-executed on any node in the cluster.
- Distributed parallel computing
- Load ballancing
- Fault tolerant
- Scales to thousands of nodes

http://hadoop.apache.org/
Hadoop

- HDFS: Hadoop Distributed File System
- YARN: a framework for job scheduling and cluster resource management
- MapReduce: a framework for parallel processing of large data sets
Hortonworks Data Platform (HDP)
Tools/Applications on Hadoop

- Pig: a high-level data-flow language and execution framework for parallel computation
- Hive: a data warehouse infrastructure that provides data summarization and ad hoc querying
- HBase: the Hadoop database, a distributed, scalable, big data store
- Cassandra: a scalable multi-master database with no single points of failure
- Mahout: a scalable machine learning and data mining library
Tools/Applications on Hadoop (continued)

▶ Avro: a data serialization system
▶ Ambari: a web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters
▶ Zeppelin: a web-based notebook that enables interactive data analytics, supporting many interpreters such as Apache Spark, Python, JDBC, Markdown and Shell
▶ Tez: a generalized data-flow programming framework, providing a powerful and flexible engine to execute an arbitrary DAG of tasks to process data for both batch and interactive use-cases
▶ Solr: a full-text search and indexing engine that enables large-scale search, navigation, and analytics on textual data
▶ Oozie: a tool for Hadoop users to automate commonly performed tasks
Hadoop Distributed File System
The primary distributed storage used by Hadoop applications
Stores very large files across machines in a large cluster
NameNode: manages the file system metadata
DataNodes: store the actual data
A file is chopped into 128MB blocks.
Each block is saved in 3 replicas on 3 different DataNodes.
YARN

- resource management
- job scheduling and monitoring

4 http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
MapReduce

- MapReduce expresses a large distributed computation as a sequence of distributed operations on data sets of key-value pairs.
- A MapReduce computation has two phases, a map phase and a reduce phase.
- Map: It splits the input data set into a large number of fragments and assigns each fragment to a map task. It also distributes the many map tasks across the cluster. For each input key-value pair \((K_1, V_1)\), the map task invokes a map function that transmutes the input into a different key-value pair \((K_2, V_2)\).
- Sort/shuffle: sorts the intermediate data set by key and produces a set of \((K_2, \text{list}(V_2))\) tuples so that all the values associated with a particular key appear together.
- Reduce: Each reduce task consumes the fragment of \((K_2, \text{list}(V_2))\) tuples assigned to it. For each such tuple it invokes a reduce function that transmutes the tuple into an output key-value pair \((K_3, V_3)\).
An Example of MapReduce: Word Count

https://wikis.nyu.edu/display/NYUHPC/Big+Data+Tutorial+1%3A+MapReduce
An Example of MapReducing with R

library(rmr2)

map <- function(k, lines) {
 words.list <- strsplit(lines, "\s")
 words <- unlist(words.list)
 return(keyval(words, 1))
}

reduce <- function(word, counts) {
 keyval(word, sum(counts))
}

wordcount <- function(input, output = NULL) {
 mapreduce(input = input, output = output, input.format = "text",
 map = map, reduce = reduce)
}

Submit job
out <- wordcount(in.file.path, out.file.path)

7From Jeffrey Breen’s presentation on *Using R with Hadoop*
http://www.slideshare.net/RevolutionAnalytics/using-r-with-hadoop
Apache Mahout is a suite of machine learning libraries designed to be scalable and robust. It provides 3 major features.

▶ A simple and extensible programming environment and framework for building scalable algorithms
▶ A wide variety of premade algorithms for Scala + Apache Spark, H2O, Apache Flink
▶ Samsara, a vector math experimentation environment with R-like syntax which works at scale

8https://mahout.apache.org/
Machine Learning Algorithms in Mahout

- Collaborative Filtering
- Classification
- Clustering
- Dimensionality Reduction
- Topic Models
Outline

Introduction

Hadoop

Spark

R and Big Data

Set Up a Hadoop/Spark Cluster

Online Resources
Spark

- a fast and general-purpose cluster computing system
- provides high-level APIs in Java, Scala, Python and R
- Spark SQL for SQL and structured data processing
- MLlib for large scale machine learning
- GraphX for graph processing
- Spark Streaming for processing real-time data streams

9http://spark.apache.org/
Spark Cluster

- Spark can run both by itself, or over existing cluster managers.
- Options for deployment:
 - Standalone Deploy Mode
 - Apache Mesos
 - Hadoop YARN
 RDD

- RDD: Resilient Distributed Datasets, a fault-tolerant collection of elements that can be operated on in parallel.
- Two ways to create RDDs:
 - parallelizing an existing collection in your driver program
 - referencing a dataset in an external storage system
- RDDs support two types of operations:
 - transformations: create a new dataset from an existing one
 - actions: return a value to the driver program after running a computation on the dataset.
- All transformations are lazy, i.e., they do not actually perform any computations until an action is performed.
A Spark DataFrame is a distributed collection of data organized into named columns.

It is conceptually equivalent to a table in a relational database or a data frame in R.

supports operations like selection, filtering, grouping, aggregation, etc.
DataFrame Operations: An Example

1) select flights from JFK
2) group flights by destination
3) count the number of flights to each destination
dest_flights <- filter(df, df$origin == "JFK") %>%
 groupBy(df$dest) %>%
 summarize(count = n(df$dest))

Note: % > % is a pipe operation.
MLlib

- Sparks machine learning (ML) library
- ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering
- Featurization: feature extraction, transformation, dimensionality reduction, and selection
- Pipelines: tools for constructing, evaluating, and tuning ML Pipelines
- Persistence: saving and load algorithms, models, and Pipelines
- Utilities: linear algebra, statistics, data handling, etc.
MLlib Algorithms

- Linear regression, logistic regression, generalized linear regression
- Decision tree, random forest
- Gradient-boosted trees
- K-means, Latent Dirichlet allocation (LDA), Gaussian Mixture Model (GMM)
- Collaborative filtering
- Model selection, cross validation
Building a generalized linear model

df <- createDataFrame(iris)
glm.model <- spark.glm(df, Sepal_Length ~ Sepal_Width + Species,
 family = "gaussian")
summary(glm.model)
pred <- predict(glm.model, df)
showDF(pred)
Outline

Introduction

Hadoop

Spark

R and Big Data

Set Up a Hadoop/Spark Cluster

Online Resources
R and Big Data Platforms

- Hadoop
 - Hadoop (or YARN) - a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models
 - R Packages: RHadoop, RHIVE

- Spark
 - Spark - a fast and general engine for large-scale data processing, which can be 100 times faster than Hadoop
 - SparkR - R frontend for Spark

- H2O
 - H2O - an open source in-memory prediction engine for big data science
 - R Package: h2o

- MongoDB
 - MongoDB - an open-source document database
 - R packages: rmongodb, RMongo
R and Hadoop

- Packages: RHadoop, RHive
- RHadoop\(^{12}\) is a collection of R packages:
 - rhdfs - connect to Hadoop Distributed File System (HDFS)
 - rhbase - connect to the NoSQL HBase database
 - plyrmr - perform common data manipulation operations on very large data sets stored on Hadoop
 - rmr2 - perform data analysis with R via MapReduce on a Hadoop cluster
 - ravro - read and write avro files
- You can play with it on a single PC (in standalone or pseudo-distributed mode), and your code developed on that will be able to work on a cluster of PCs (in full-distributed mode)!
- Step-by-Step Guide to Setting Up an R-Hadoop System

\(^{12}\)https://github.com/RevolutionAnalytics/RHadoop/wiki
R and Spark

- SparkR
- sparklyr
SparkR

- SparkR: R on Spark
- an R package that provides a light-weight frontend to use Apache Spark from R
- initially developed at the AMPLab, UC Berkeley
- has been a part of the Apache Spark since v1.4 released in June 2015
- provides a distributed data frame implementation that supports operations like selection, filtering, aggregation etc. (similar to R data frames, dplyr) but on large datasets.
- supports distributed machine learning using MLlib.
- SparkR: Scaling R Programs with Spark. Shivaram Venkataraman et al., In Proc. of SIGMOD’16.

13 https://amplab.cs.berkeley.edu/publication/sparkr-scaling-r-programs-with-spark/
14 https://spark.apache.org/docs/latest/sparkr.html
SparkR Architecture15

15 https://amplab.cs.berkeley.edu/publication/sparkr-scaling-r-programs-with-spark/
Machine Learning Algorithms Supported by SparkR

- Generalized Linear Model
- Accelerated Failure Time (AFT)
- Survival Regression Model
- Naive Bayes Model
- K-means
sparklyr - an R interface for Apache Spark
Provide a complete dplyr backend for data manipulation
Filter and aggregate Spark datasets then bring them into R for analysis and visualization
Distributed machine learning from R: using Spark MLlib or H2O Sparkling Water
Create extensions that call the full Spark API and provide interfaces to Spark packages.

http://spark.rstudio.com/
MLlib Algorithms

- `ml_kmeans`: K-means Clustering
- `ml_linear_regression`: Linear Regression
- `ml_logistic_regression`: Logistic Regression
- `ml_survival_regression`: Survival Regression
- `ml_generalized_linear_regression`: Generalized Linear Regression
- `ml_decision_tree`: Decision Trees
- `ml_random_forest`: Random Forests
- `ml_gradient_boosted_trees`: Gradient-Boosted Trees
- `ml_pca`: Principal Components Analysis
- `ml_naive_bayes`: Naive-Bayes
- `ml_multilayer_perceptron`: Multilayer Perceptron
- `ml_lda`: Latent Dirichlet Allocation
- `ml_one_vs_rest`: One vs Rest
H2O Machine Learning Algorithms

- h2o.glm: Generalized Linear Model
- h2o.deeplearning: Multilayer Perceptron
- h2o.randomForest: Random Forest
- h2o.gbm: Gradient Boosting Machine
- h2o.naiveBayes: Naive Bayes
- h2o.prcomp: Principal Components Analysis
- h2o.svd: Singular Value Decomposition
- h2o.glrm: Generalized Low Rank Model
- h2o.kmeans: K-Means Clustering
- h2o.anomaly: Anomaly Detection
- h2o.ensemble, h2ostack: Ensemble/stacking
Outline

Introduction

Hadoop

Spark

R and Big Data

Set Up a Hadoop/Spark Cluster

Online Resources
Set up a Hadoop/Spark Cluster

- **On-premise cluster**
 - Apache
 - Hortonworks
 - MapR
 - Cloudera:
 - http://www.cloudera.com/

- **Cloud solutions**
 - Amazon Web Services (AWS):
 - https://aws.amazon.com/
 - Microsoft Azure:
 - http://azure.microsoft.com
 - Google Cloud Platform:
 - https://cloud.google.com/hadoop/
Download Hadoop and Spark from Apache.org and install them

- Hadoop
 http://hadoop.apache.org/releases.html
- Spark
 http://spark.apache.org/downloads.html
Hortonworks Data Platform (HDP) ¹⁷

¹⁷http://hortonworks.com/products/data-center/hdp/
Hortonworks Sandbox

- A personal, portable Apache Hadoop and its ecosystem environment
- On a virtual machine: Virtual Box, VMware, Docker
- On cloud: Microsoft Azure
- Good for learning Hadoop, Spark, Pig, Hive, etc.
- Download for free: http://hortonworks.com/downloads/
Hortonworks Sandbox

- A personal, portable Apache Hadoop and its ecosystem environment
- On a virtual machine: Virtual Box, VMware, Docker
- On cloud: Microsoft Azure
- Good for learning Hadoop, Spark, Pig, Hive, etc.
- Download for free: http://hortonworks.com/downloads/

To set up a cluster, use Hortonworks Data Platform, not Sandbox.
It integrates Hadoop, Spark, and Apache Drill with real-time database capabilities, global event streaming, and scalable enterprise storage.

MapR Converged Data Platform

Open source engines and tools

Outline

Introduction

Hadoop

Spark

R and Big Data

Set Up a Hadoop/Spark Cluster

Online Resources
Online Resources

▶ RDataMining Reference Card

▶ Free online courses and documents
 http://www.rdatamining.com/resources/
 http://www.rdatamining.com/big-data/resources/

▶ RDataMining Group on LinkedIn (22,000+ members)
 http://group.rdatamining.com

▶ Twitter (2,700+ followers)
 @RDataMining
The End

Thanks!

Email: yanchang(at)RDataMining.com
Twitter: @RDataMining