Association Rule Mining with R *

Yanchang Zhao
http://www.RDataMining.com

R and Data Mining Course
Canberra, Australia

13 December 2018

Outline

Association Rules: Concept and Algorithms
Basics of Association Rules
 Algorithms: Apriori, ECLAT and FP-growth
 Interestingness Measures
 Applications

Association Rule Mining with R
 Mining Association Rules
 Removing Redundancy
 Interpreting Rules
 Visualizing Association Rules
 Wrap Up

Further Readings and Online Resources
Association Rules

- To discover association rules showing itemsets that occur together frequently [Agrawal et al., 1993].
- Widely used to analyze retail basket or transaction data.
- An association rule is of the form $A \Rightarrow B$, where A and B are itemsets or attribute-value pair sets and $A \cap B = \emptyset$.
- A: antecedent, left-hand-side or LHS
- B: consequent, right-hand-side or RHS
- The rule means that those database tuples having the items in the left hand of the rule are also likely to having those items in the right hand.
- Examples of association rules:
 - bread \Rightarrow butter
 - computer \Rightarrow software
 - age in [25,35] & income in [80K,120K] \Rightarrow buying up-to-date mobile handsets
Association Rules

Association rules are rules presenting association or correlation between itemsets.

\[
\text{support}(A \Rightarrow B) = \text{support}(A \cup B) = P(A \land B)
\]

\[
\text{confidence}(A \Rightarrow B) = \frac{P(A \land B)}{P(A)}
\]

\[
\text{lift}(A \Rightarrow B) = \frac{\text{confidence}(A \Rightarrow B)}{P(B)} = \frac{P(A \land B)}{P(A)P(B)}
\]

where \(P(A)\) is the percentage (or probability) of cases containing \(A\).
An Example

- Assume there are 100 students.
- 10 out of them know data mining techniques, 8 know R language and 6 know both of them.
- \(R \Rightarrow DM \): If a student knows R, then he or she knows data mining.
An Example

- Assume there are 100 students.
- 10 out of them know data mining techniques, 8 know R language and 6 know both of them.
- \(R \Rightarrow DM \): If a student knows R, then he or she knows data mining.
- \(\text{support} = \frac{6}{100} = 0.06 \)
- \(\text{confidence} = \frac{0.06}{0.08} = 0.75 \)
- \(\text{lift} = \frac{0.75}{0.1} = 7.5 \)
Assume there are 100 students.

10 out of them know data mining techniques, 8 know R language and 6 know both of them.

R ⇒ DM: If a student knows R, then he or she knows data mining.

support = P(R ∧ DM) = 6/100 = 0.06
An Example

- Assume there are 100 students.
- 10 out of them know data mining techniques, 8 know R language and 6 know both of them.
- If a student knows R, then he or she knows data mining.
- support = \(P(R \land DM) = 6/100 = 0.06 \)
- confidence =
An Example

- Assume there are 100 students.
- 10 out of them know data mining techniques, 8 know R language and 6 know both of them.
- \(R \Rightarrow DM: \) If a student knows R, then he or she knows data mining.
- \(support = P(R \land DM) = \frac{6}{100} = 0.06 \)
- \(confidence = support / P(R) = \frac{0.06}{0.08} = 0.75 \)

\[\text{lift} = \frac{0.75}{0.1} = 7.5 \]
Assume there are 100 students.

10 out of them know data mining techniques, 8 know R language and 6 know both of them.

R \Rightarrow \text{DM}: \text{If a student knows R, then he or she knows data mining.}

\text{support} = P(R \land \text{DM}) = 6/100 = 0.06

\text{confidence} = \text{support} / P(R) = 0.06/0.08 = 0.75

\text{lift} =
Assume there are 100 students.

10 out of them know data mining techniques, 8 know R language and 6 know both of them.

R ⇒ DM: If a student knows R, then he or she knows data mining.

- support = \(P(R \land DM) = \frac{6}{100} = 0.06 \)
- confidence = support / P(R) = 0.06 / 0.08 = 0.75
- lift = confidence / P(DM) = 0.75 / 0.1 = 7.5
Association Rule Mining

- Association Rule Mining is normally composed of two steps:
 - Finding all frequent itemsets whose supports are no less than a minimum support threshold;
 - From above frequent itemsets, generating association rules with confidence above a minimum confidence threshold.
- The second step is straightforward, but the first one, frequent itemset generation, is computing intensive.
- The number of possible itemsets is $2^n - 1$, where n is the number of unique items.
- Algorithms: Apriori, ECLAT, FP-Growth
Downward-Closure Property

- Downward-closure property of support, a.k.a. anti-monotonicity
- For a frequent itemset, all its subsets are also frequent.
 if \{A,B\} is frequent, then both \{A\} and \{B\} are frequent.
- For an infrequent itemset, all its super-sets are infrequent.
 if \{A\} is infrequent, then \{A,B\}, \{A,C\} and \{A,B,C\} are infrequent.
- Useful to prune candidate itemsets
Itemset Lattice
Outline

Association Rules: Concept and Algorithms
 Basics of Association Rules
 Algorithms: Apriori, ECLAT and FP-growth
 Interestingness Measures
 Applications

Association Rule Mining with R
 Mining Association Rules
 Removing Redundancy
 Interpreting Rules
 Visualizing Association Rules
 Wrap Up

Further Readings and Online Resources
Apriori [Agrawal and Srikant, 1994]: a classic algorithm for association rule mining

▶ A level-wise, breadth-first algorithm
▶ Counts transactions to find frequent itemsets
▶ Generates candidate itemsets by exploiting downward closure property of support
Apriori Process

1. Find all frequent 1-itemsets L_1
2. Join step: generate candidate k-itemsets by joining L_{k-1} with itself
3. Prune step: prune candidate k-itemsets using downward-closure property
4. Scan the dataset to count frequency of candidate k-itemsets and select frequent k-itemsets L_k
5. Repeat above process, until no more frequent itemsets can be found.
From [Zaki and Meira, 2014]
FP-growth

- FP-growth: frequent-pattern growth, which mines frequent itemsets without candidate generation [Han et al., 2004]
- Compresses the input database creating an FP-tree instance to represent frequent items.
- Divides the compressed database into a set of conditional databases, each one associated with one frequent pattern.
- Each such database is mined separately.
- It reduces search costs by looking for short patterns recursively and then concatenating them in long frequent patterns.†

†https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm
FP-tree

The frequent-pattern tree (FP-tree) is a compact structure that stores quantitative information about frequent patterns in a dataset. It has two components:

- A root labeled as “null” with a set of item-prefix subtrees as children
- A frequent-item header table

Each node has three attributes:

- Item name
- Count: number of transactions represented by the path from root to the node
- Node link: links to the next node having the same item name

Each entry in the frequent-item header table also has three attributes:

- Item name
- Head of node link: point to the first node in the FP-tree having the same item name
- Count: frequency of the item
FP-tree

From [Han, 2005]
ECLAT

- ECLAT: equivalence class transformation [Zaki et al., 1997]
- A depth-first search algorithm using set intersection
- Idea: use tid (transaction ID) set intersection to compute the support of a candidate itemset, avoiding the generation of subsets that does not exist in the prefix tree.
- \(t(AB) = t(A) \cap t(B) \), where \(t(A) \) is the set of IDs of transactions containing \(A \).
- \(\text{support}(AB) = |t(AB)| \)
- Eclat intersects the tidsets only if the frequent itemsets share a common prefix.
- It traverses the prefix search tree in a way of depth-first searching, processing a group of itemsets that have the same prefix, also called a prefix equivalence class.
ECLAT

- It works recursively.
- The initial call uses all single items with their tid-sets.
- In each recursive call, it verifies each itemset tid-set pair \((X, t(X))\) with all the other pairs to generate new candidates. If the new candidate is frequent, it is added to the set \(P_x\).
- Recursively, it finds all frequent itemsets in the \(X\) branch.
ECLAT

From [Zaki and Meira, 2014]
Outline

Association Rules: Concept and Algorithms
- Basics of Association Rules
- Algorithms: Apriori, ECLAT and FP-growth
- Interestingness Measures
- Applications

Association Rule Mining with R
- Mining Association Rules
- Removing Redundancy
- Interpreting Rules
- Visualizing Association Rules
- Wrap Up

Further Readings and Online Resources
Interestingness Measures

- Which rules or patterns are interesting (and useful)?
- Objective measures, such as lift, odds ratio and conviction, are often data-driven and give the interestingness in terms of statistics or information theory.
- Subjective (user-driven) measures, such as unexpectedness and actionability, focus on finding interesting patterns by matching against a given set of user beliefs.
Objective Interestingness Measures

- Support, confidence and lift are the most widely used objective measures to select interesting rules.
- Many other objective measures introduced by Tan et al. [Tan et al., 2002], such as ϕ-coefficient, odds ratio, kappa, mutual information, J-measure, Gini index, laplace, conviction, interest and cosine.
- Different measures have different intrinsic properties and there is no measure that is better than others in all application domains.
- In addition, any-confidence, all-confidence and bond, are designed by Omiecinski [Omiecinski, 2003].
- *Utility* is used by Chan et al. [Chan et al., 2003] to find top-k objective-directed rules.
- *Unexpected Confidence Interestingness* and *Isolated Interestingness* are designed by Dong and Li [Dong and Li, 1998] by considering its unexpectedness in terms of other association rules in its neighbourhood.
Subjective Interestingness Measures

- A pattern is unexpected if it is new to a user or contradicts the user’s experience or domain knowledge.
- A pattern is actionable if the user can do something with it to his/her advantage [Silberschatz and Tuzhilin, 1995, Liu et al., 2003].
- Liu and Hsu [Liu and Hsu, 1996] proposed to rank learned rules by matching against expected patterns provided by the user.
- Ras and Wieczorkowska [Ras and Wieczorkowska, 2000] designed action-rules which show “what actions should be taken to improve the profitability of customers”. The attributes are grouped into “hard attributes” which cannot be changed and “soft attributes” which are possible to change with reasonable costs. The status of customers can be moved from one to another by changing the values of soft ones.
Interestingness Measures - 1

<table>
<thead>
<tr>
<th>#</th>
<th>Measure</th>
<th>Formula</th>
</tr>
</thead>
</table>
| 1 | φ-coefficient | \[
\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))} - \sum_j \max_k P(A_j,B_k) + \sum_k \max_j P(A_j,B_k) - \max_j P(A_j) - \max_k P(B_k) / 2} - \max_j P(A_j) - \max_k P(B_k)
\] |
| 2 | Goodman-Kruskal’s (λ) | \[
\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} \sqrt{\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} - \frac{1}{\alpha + 1}}
\] |
| 3 | Odds ratio (α) | \[
\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} \sqrt{\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} - \frac{1}{\alpha + 1}}
\] |
| 4 | Yule’s Q | \[
\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} \sqrt{\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} - \frac{1}{\alpha + 1}}
\] |
| 5 | Yule’s Y | \[
\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} \sqrt{\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} - \frac{1}{\alpha + 1}}
\] |
| 6 | Kappa (κ) | \[
1 - \frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} \sqrt{\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(A,B)} - \frac{1}{\alpha + 1}}
\] |
| 7 | Mutual Information (M) | \[
\sum_i \sum_j P(A_i,B_j) \log \frac{P(A_i,B_j)}{P(A_i)P(B_j)}
\] |
| 8 | J-Measure (J) | \[
\max (P(A,B) \log(\frac{P(B|A)}{P(B)}), P(AB) \log(\frac{P(B|A)}{P(B)}))
\] |
| 9 | Gini index (G) | \[
\max (P(A)[P(B|A)^2 + P(\overline{B}|A)^2] + P(\overline{A})[P(B|\overline{A})^2 + P(\overline{B}|\overline{A})^2] - P(B)^2 - P(\overline{B})^2),
\] |

From [Tan et al., 2002]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Support (s)</td>
</tr>
<tr>
<td>11</td>
<td>Confidence (c)</td>
</tr>
<tr>
<td>12</td>
<td>Laplace (L)</td>
</tr>
<tr>
<td>13</td>
<td>Conviction (V)</td>
</tr>
<tr>
<td>14</td>
<td>Interest (I)</td>
</tr>
<tr>
<td>15</td>
<td>cosine (IS)</td>
</tr>
<tr>
<td>16</td>
<td>Piatetsky-Shapiro’s (PS)</td>
</tr>
<tr>
<td>17</td>
<td>Certainty factor (F)</td>
</tr>
<tr>
<td>18</td>
<td>Added Value (AV)</td>
</tr>
<tr>
<td>19</td>
<td>Collective strength (S)</td>
</tr>
<tr>
<td>20</td>
<td>Jaccard (ζ)</td>
</tr>
<tr>
<td>21</td>
<td>Klosgen (K)</td>
</tr>
</tbody>
</table>

$$P(A, B) = \max(P(B|A), P(A|B))$$

$$\max\left(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2}\right)$$

$$\max\left(\frac{P(A)P(B)}{P(AB)}, \frac{P(B)P(A)}{P(BA)}\right)$$

$$\frac{P(A,B)}{P(A)P(B)} \sqrt{\frac{P(A)P(B)}{P(A,B) - P(A)P(B)}}$$

$$\max\left(\frac{P(B|A) - P(B)}{1-P(B)}, \frac{P(A|B) - P(A)}{1-P(A)}\right)$$

$$\max(P(B|A) - P(B), P(A|B) - P(A))$$

$$\sqrt{P(A, B) \max(P(B|A) - P(B), P(A|B) - P(A))}$$

From [Tan et al., 2002]
Outline

Association Rules: Concept and Algorithms
- Basics of Association Rules
- Algorithms: Apriori, ECLAT and FP-growth
- Interestingness Measures

Applications

Association Rule Mining with R
- Mining Association Rules
- Removing Redundancy
- Interpreting Rules
- Visualizing Association Rules
- Wrap Up

Further Readings and Online Resources
Applications

- Market basket analysis
 - Identifying associations between items in shopping baskets, i.e., which items are frequently purchased together
 - Can be used by retailers to understand customer shopping habits, do selective marketing and plan shelf space

- Churn analysis and selective marketing
 - Discovering demographic characteristics and behaviours of customers who are likely/unlikely to switch to other telcos
 - Identifying customer groups who are likely to purchase a new service or product

- Credit card risk analysis
 - Finding characteristics of customers who are likely to default on credit card or mortgage
 - Can be used by banks to reduce risks when assessing new credit card or mortgage applications
Applications (cont.)

▸ Stock market analysis
 ▸ Finding relationships between individual stocks, or between stocks and economic factors
 ▸ Can help stock traders select interesting stocks and improve trading strategies

▸ Medical diagnosis
 ▸ Identifying relationships between symptoms, test results and illness
 ▸ Can be used for assisting doctors on illness diagnosis or even on treatment
Outline

Association Rules: Concept and Algorithms
Basics of Association Rules
Algorithms: Apriori, ECLAT and FP-growth
Interestingness Measures
Applications

Association Rule Mining with R
Mining Association Rules
Removing Redundancy
Interpreting Rules
Visualizing Association Rules
Wrap Up

Further Readings and Online Resources
Association Rule Mining Algorithms in R

- **Apriori [Agrawal and Srikant, 1994]**
 - A level-wise, breadth-first algorithm which counts transactions to find frequent itemsets and then derive association rules from them
 - `apriori()` in package `arules`

- **ECLAT [Zaki et al., 1997]**
 - Finds frequent itemsets with equivalence classes, depth-first search and set intersection instead of counting
 - `eclat()` in package `arules`
The Titanic Dataset

- The Titanic dataset in the *datasets* package is a 4-dimensional table with summarized information on the fate of passengers on the Titanic according to social class, sex, age and survival.
- To make it suitable for association rule mining, we reconstruct the raw data as `titanic.raw`, where each row represents a person.
- The reconstructed raw data can also be downloaded at http://www.rdatamining.com/data/titanic.raw.rdata.
Pipe Operations in R

- Load library magrittr for pipe operations
- Avoid nested function calls
- Make code easy to understand
- Supported by dplyr and ggplot2

```r
library(magrittr)  # for pipe operations
## traditional way
b <- fun3(fun2(fun1(a), p2))
## the above can be rewritten to
b <- a %>% fun1() %>% fun2(p2) %>% fun3()
```
```r
## download data
download.file(url="http://www.rdatamining.com/data/titanic.raw.rdata",
destfile="./data/titanic.raw.rdata")

library(magrittr)  ## for pipe operations
## load data, and the name of the R object is titanic.raw
load("./data/titanic.raw.rdata")
## dimensionality
titanic.raw %>% dim()
## [1] 2201 4

## structure of data
titanic.raw %>% str()
## 'data.frame': 2201 obs. of 4 variables:
## $ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3...
## $ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 ...
## $ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 ...
## $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1...
## draw a random sample of 5 records
idx <- 1:nrow(titanic.raw) %>% sample(5)
titanic.raw[idx, ]

##     Class  Sex    Age  Survived
## 527   3rd  Male Adult     No
## 333   3rd  Male Adult     No
## 2123  3rd Female Adult Yes
## 2121  3rd Female Adult Yes
## 1029  Crew  Male Adult     No

## a summary of the dataset
titanic.raw %>% summary()

##     Class     Sex  Age  Survived
## 1st :325 Female: 470 Adult:2092 No :1490
## 3rd :706
## Crew:885
Function `apriori()`

- Mine frequent itemsets, association rules or association hyperedges using the Apriori algorithm.
- The Apriori algorithm employs level-wise search for frequent itemsets.
- Default settings:
  - minimum support: `supp=0.1`
  - minimum confidence: `conf=0.8`
  - maximum length of rules: `maxlen=10`
library(arules)  ## load required library
rules.all <- titanic.raw %>% apriori()  ## run the APRIORI algorithm

## Apriori

## Parameter specification:

## confidence minval smax arem aval originalSupport maxtime
## 0.8 0.1 1 none FALSE TRUE 5

## support minlen maxlen target ext
## 0.1 1 10 rules FALSE

## Algorithmic control:

## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE

## Absolute minimum support count: 220

## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[10 item(s), 2201 transaction(s)] don...
## sorting and recoding items ... [9 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [27 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
rules.all %>% length()  ## number of rules discovered
### [1] 27

rules.all %>% inspect()  ## print all rules
###
### [1] lhs rhs support confidence...
### [1] {} => {Age=Adult} 0.9504771 0.9504771...
### [2] {Class=2nd} => {Age=Adult} 0.1185825 0.9157895...
### [3] {Class=1st} => {Age=Adult} 0.1449341 0.9815385...
### [4] {Sex=Female} => {Age=Adult} 0.1930940 0.9042553...
### [5] {Class=3rd} => {Age=Adult} 0.2848705 0.8881020...
### [6] {Survived=Yes} => {Age=Adult} 0.2971377 0.9198312...
### [7] {Class=Crew} => {Sex=Male} 0.3916402 0.9740113...
### [8] {Class=Crew} => {Age=Adult} 0.4020900 1.0000000...
### [9] {Survived=No} => {Sex=Male} 0.6197183 0.9154362...
### [10] {Survived=No} => {Age=Adult} 0.6533394 0.9651007...
### [11] {Sex=Male} => {Age=Adult} 0.7573830 0.9630272...
### [12] {Sex=Female, ...
###     Survived=Yes} => {Age=Adult} 0.1435711 0.9186047...
### [13] {Class=3rd, ...
###     Sex=Male} => {Survived=No} 0.1917310 0.8274510...
### [14] {Class=3rd, ...
###     Survived=No} => {Age=Adult} 0.2162653 0.9015152...
### [15] {Class=3rd, ...
###     Sex=Male} => {Age=Adult} 0.2099046 0.9058824...
Suppose we want to find patterns of survival and non-survival.

- `verbose=F`: suppress progress report
- `minlen=2`: find rules that contain at least two items
- Use lower thresholds for support and confidence
- `rhs=c(...)`: find rules whose right-hand sides are in the list
- `default="lhs"`: use default setting for left-hand side
- `quality(...)`: interestingness measures

```r
run APRIORI again to find rules with rhs containing "Survived" only
rules.surv <- titanic.raw %>% apriori(
 control = list(verbos=F),
 parameter = list(minlen=2, supp=0.005, conf=0.8),
 appearance = list(rhs=c("Survived=No",
 "Survived=Yes"),
 default="lhs"))

keep three decimal places
quality(rules.surv) <- rules.surv %>% quality() %>% round(digits=3)
sort rules by lift
rules.surv.sorted <- rules.surv %>% sort(by="lift")
```
```r
rules.surv.sorted %>% inspect() ## print rules

<table>
<thead>
<tr>
<th></th>
<th>rhs</th>
<th>support</th>
<th>confidence</th>
<th>lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Class=2nd, Age=Child} => {Survived=Yes}</td>
<td>0.011</td>
<td>1.000</td>
<td>3.66</td>
</tr>
<tr>
<td>2</td>
<td>{Class=2nd, Sex=Female, Age=Child} => {Survived=Yes}</td>
<td>0.006</td>
<td>1.000</td>
<td>3.66</td>
</tr>
<tr>
<td>3</td>
<td>{Class=1st, Sex=Female} => {Survived=Yes}</td>
<td>0.064</td>
<td>0.972</td>
<td>3.66</td>
</tr>
<tr>
<td>4</td>
<td>{Class=1st, Sex=Female, Age=Adult} => {Survived=Yes}</td>
<td>0.064</td>
<td>0.972</td>
<td>3.66</td>
</tr>
<tr>
<td>5</td>
<td>{Class=2nd, Sex=Female} => {Survived=Yes}</td>
<td>0.042</td>
<td>0.877</td>
<td>2.66</td>
</tr>
<tr>
<td>6</td>
<td>{Class=Crew, Sex=Female} => {Survived=Yes}</td>
<td>0.009</td>
<td>0.870</td>
<td>2.66</td>
</tr>
<tr>
<td>7</td>
<td>{Class=Crew, Sex=Female, Age=Adult} => {Survived=Yes}</td>
<td>0.009</td>
<td>0.870</td>
<td>2.66</td>
</tr>
<tr>
<td>8</td>
<td>{Class=2nd, Sex=Female, Age=Adult} => {Survived=Yes}</td>
<td>0.036</td>
<td>0.860</td>
<td>2.66</td>
</tr>
<tr>
<td>9</td>
<td>{Class=2nd, Sex=Male, ...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Outline

Association Rules: Concept and Algorithms
  Basics of Association Rules
  Algorithms: Apriori, ECLAT and FP-growth
  Interestingness Measures
  Applications

Association Rule Mining with R
  Mining Association Rules
 Removing Redundancy
  Interpreting Rules
  Visualizing Association Rules
  Wrap Up

Further Readings and Online Resources
Redundant Rules

- There are often too many association rules discovered from a dataset.
- It is necessary to remove redundant rules before a user is able to study the rules and identify interesting ones from them.
Redundant Rules

Rule #2 provides no extra knowledge in addition to rule #1, since rules #1 tells us that all 2nd-class children survived.

When a rule (such as #2) is a super rule of another rule (#1) and the former has the same or a lower lift, the former rule (#2) is considered to be redundant.

Other redundant rules in the above result are rules #4, #7 and #8, compared respectively with #3, #6 and #5.
## Remove Redundant Rules

```r
find redundant rules
subset.matrix <- is.subset(rules.surv.sorted, rules.surv.sorted)
subset.matrix[lower.tri(subset.matrix, diag = T)] <- F
redundant <- colSums(subset.matrix) >= 1

which rules are redundant
redundant %>% which()

remove redundant rules
rules.surv.pruned <- rules.surv.sorted[!redundant]
```
Remaining Rules

```r
print rules

<table>
<thead>
<tr>
<th>#</th>
<th>lhs</th>
<th>rhs</th>
<th>support</th>
<th>confidence</th>
<th>li...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Class=2nd, Age=Child} => {Survived=Yes}</td>
<td>0.011</td>
<td>1.000</td>
<td>3.0...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{Class=1st, Sex=Female} => {Survived=Yes}</td>
<td>0.064</td>
<td>0.972</td>
<td>3.0...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{Class=2nd, Sex=Female} => {Survived=Yes}</td>
<td>0.042</td>
<td>0.877</td>
<td>2.7...</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{Class=Crew, Sex=Female} => {Survived=Yes}</td>
<td>0.009</td>
<td>0.870</td>
<td>2.6...</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>{Class=2nd, Sex=Male, Age=Adult} => {Survived=No}</td>
<td>0.070</td>
<td>0.917</td>
<td>1.3...</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>{Class=2nd, Sex=Male} => {Survived=No}</td>
<td>0.070</td>
<td>0.860</td>
<td>1.2...</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>{Class=3rd, Sex=Male, Age=Adult} => {Survived=No}</td>
<td>0.176</td>
<td>0.838</td>
<td>1.2...</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>{Class=3rd, Sex=Male} => {Survived=No}</td>
<td>0.192</td>
<td>0.827</td>
<td>1.2...</td>
<td></td>
</tr>
</tbody>
</table>
```
Outline

Association Rules: Concept and Algorithms
Basics of Association Rules
Algorithms: Apriori, ECLAT and FP-growth
Interestingness Measures
Applications

Association Rule Mining with R
Mining Association Rules
Removing Redundancy
Interpreting Rules
Visualizing Association Rules
Wrap Up

Further Readings and Online Resources
Did children have a higher survival rate than adults?

Did children of the 2nd class have a higher survival rate than other children?
```r
rules.surv.pruned[1] %>% inspect() ## print rules
print rules
lls rhs support confi...
[1] {Class=2nd, Age=Child} => {Survived=Yes} 0.011 1 ...
lift count
[1] 3.096 24
```

- Did children have a higher survival rate than adults?
- Did children of the 2nd class have a higher survival rate than other children?
- The rule states only that all children of class 2 survived, but provides no information at all about the survival rates of other classes.
Find Rules about Age Groups

- Use lower thresholds to find all rules for children of different classes
- `verbose=F`: suppress progress report
- `minlen=3`: find rules that contain at least three items
- Use lower thresholds for support and confidence
- `rhs=c(...), rhs=c(...):` find rules whose left/right-hand sides are in the list
- `quality(...):` interestingness measures

```r
rules.age <- titanic.raw %>% apriori(control = list(verbose=F),
 parameter = list(minlen=3, supp=0.002, conf=0.2),
 appearance = list(default="none", rhs=c("Survived=Yes"),
 lhs=c("Class=1st", "Class=2nd", "Class=3rd",
 "Age=Child", "Age=Adult")))
rules.age <- sort(rules.age, by="confidence")
```
Rules about Age Groups

```r
rules.age %>% inspect() ## print rules
```

<table>
<thead>
<tr>
<th></th>
<th>lhs</th>
<th>rhs</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Class=2nd, Age=Child} =&gt; {Survived=Yes}</td>
<td>0.010904134</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{Class=1st, Age=Child} =&gt; {Survived=Yes}</td>
<td>0.002726034</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{Class=1st, Age=Adult} =&gt; {Survived=Yes}</td>
<td>0.089504771</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{Class=2nd, Age=Adult} =&gt; {Survived=Yes}</td>
<td>0.042707860</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>{Class=3rd, Age=Child} =&gt; {Survived=Yes}</td>
<td>0.012267151</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>{Class=3rd, Age=Adult} =&gt; {Survived=Yes}</td>
<td>0.068605179</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>confidence</th>
<th>lift</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000</td>
<td>3.0956399</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1.000000</td>
<td>3.0956399</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>0.6175549</td>
<td>1.9117275</td>
<td>197</td>
</tr>
<tr>
<td>4</td>
<td>0.3601533</td>
<td>1.1149048</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>0.3417722</td>
<td>1.0580035</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>0.2408293</td>
<td>0.7455209</td>
<td>151</td>
</tr>
</tbody>
</table>

```r
titanic.raw$Survived %>% table() %>% prop.table()
```

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.676965</td>
<td>0.323035</td>
</tr>
</tbody>
</table>
Outline

Association Rules: Concept and Algorithms
  Basics of Association Rules
  Algorithms: Apriori, ECLAT and FP-growth
  Interestingness Measures
  Applications

Association Rule Mining with R
  Mining Association Rules
  Removing Redundancy
  Interpreting Rules
  Visualizing Association Rules
  Wrap Up

Further Readings and Online Resources
library(arulesViz)

rules.all %>% plot()

Scatter plot for 27 rules

- X-axis: support
- Y-axis: confidence
- Color: lift
rules.surv %>% plot(method = "grouped")

Grouped Matrix for 12 Rules

Size: support
Color: lift

2 rules: {Age=Child, Class=2nd, +1 items}
2 rules: {Class=1st, Sex=Female, +1 items}
1 rules: {Age=2nd, Sex=Female}
2 rules: {Class=Crew, Sex=Female, +1 items}
1 rules: {Age=Adult, Class=2nd, +1 items}
1 rules: {Sex=Male, Age=Adult, +1 items}
1 rules: {Sex=Male, Class=2nd}
1 rules: {Class=3rd, Sex=Male, +1 items}
1 rules: {Class=3rd, Sex=Male}

{Survived=No}
{Survived=Yes}

{Class=1st, Sex=Female, +1 items} ⇒ {Survived=Yes}
rules.surv %>% plot(method="graph",
control=list(layout=igraph::with_fr()))

Graph for 12 rules

Class=Class
Sex=Sex
Age=Age
Survived=Survived

size: support (0.006 – 0.192)
color: lift (1.222 – 3.096)
rules.surv %>% plot(method="graph",
control=list(layout=igraph::in_circle()))

Graph for 12 rules

Class=1st
Class=2nd
Class=3rd
Class=Crew
Sex=Female
Sex=Male
Age=Adult
Age=Child
Survived=No
Survived=Yes

size: support (0.006 – 0.192)
color: lift (1.222 – 3.096)
```r
rules.surv %>% plot(method="paracoord",
control=list(reorder=T))
```
Interactive Plots and Reorder rules

```r
rules.all %>% plot(interactive = T)
```

`interactive = TRUE`

- Selecting and inspecting one or multiple rules
- Zooming
- Filtering rules with an interesting measure

```r
rules.surv %>% plot(method = "paracoord", control = list(reorder = T))
```

`reorder = TRUE`

- To improve visualisation by reordering rules and minimizing crossovers
- The visualisation is likely to change from run to run.
Outline

Association Rules: Concept and Algorithms
  Basics of Association Rules
  Algorithms: Apriori, ECLAT and FP-growth
  Interestingness Measures
  Applications

Association Rule Mining with R
  Mining Association Rules
  Removing Redundancy
  Interpreting Rules
  Visualizing Association Rules
  Wrap Up

Further Readings and Online Resources
Wrap Up

- Starting with a high support, to get a small set of rules quickly
- Setting constraints to left and/or right hand side of rules, to focus on rules that you are interested in
- Digging down data to find more associations with lower thresholds of support and confidence
- Rules of low confidence / lift can be interesting and useful.
- Be cautious when interpreting rules
Further Readings

- Association Rule Learning
  https://en.wikipedia.org/wiki/Association_rule_learning

- Data Mining Algorithms In R: Apriori
  https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_Apriori_Algorithm

- Data Mining Algorithms In R: ECLAT
  https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_Eclat_Algorithm

- Data Mining Algorithms In R: FP-Growth
  https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

- FP-Growth Implementation by Christian Borgelt
  http://www.borgelt.net/fpgrowth.html

- Frequent Itemset Mining Implementations Repository
  http://fimi.ua.ac.be/data/
Further Readings

- More than 20 interestingness measures, such as chi-square, conviction, gini and leverage

- More reviews on interestingness measures:
  [Silberschatz and Tuzhilin, 1996], [Tan et al., 2002] and [Omiecinski, 2003]

- Post mining of association rules, such as selecting interesting association rules, visualization of association rules and using association rules for classification [Zhao et al., 2009]

- Package *arulesSequences*: mining sequential patterns
  http://cran.r-project.org/web/packages/arulesSequences/
Online Resources

▶ Chapter 9 - Association Rules, in book titled
*R and Data Mining: Examples and Case Studies* [Zhao, 2012]

▶ RDataMining Reference Card

▶ Free online courses and documents
http://www.rdatamining.com/resources/

▶ RDataMining Group on LinkedIn (26,000+ members)
http://group.rdatamining.com

▶ Twitter (3,300+ followers)
@RDataMining
References I

Mining association rules between sets of items in large databases.

Fast algorithms for mining association rules in large databases.
In Proc. of the 20th International Conference on Very Large Data Bases, pages 487–499, Santiago, Chile.

Mining high utility itemsets.

Interestingness of discovered association rules in terms of neighborhood-based unexpectedness.

On objective measures of rule surprisingness.

Han, J. (2005).
Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Han, J., Pei, J., Yin, Y., and Mao, R. (2004).
Mining frequent patterns without candidate generation.
Data Mining and Knowledge Discovery, 8:53–87.
Post-analysis of learned rules.
In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 828–834, Portland, Oregon, USA.

Discovering business intelligence information by comparing company web sites.

Alternative interest measures for mining associations in databases.
IEEE Transactions on Knowledge and Data Engineering, 15(1):57–69.

Action-rules: How to increase profit of a company.

On subjective measures of interestingness in knowledge discovery.
In Knowledge Discovery and Data Mining, pages 275–281.

What makes patterns interesting in knowledge discovery systems.
IEEE Transactions on Knowledge and Data Engineering, 8(6):970–974.

Selecting the right interestingness measure for association patterns.
In KDD ’02: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 32–41, New York, NY, USA. ACM Press.
*Data Mining and Analysis: Fundamental Concepts and Algorithms.*
Cambridge University Press.

New algorithms for fast discovery of association rules.
Technical Report 651, Computer Science Department, University of Rochester, Rochester, NY 14627.

Zhao, Y. (2012).
*R and Data Mining: Examples and Case Studies.*

Zhao, Y., Zhang, C., and Cao, L., editors (2009).
Information Science Reference, Hershey, PA.
Thanks!

Email: yanchang(at)RDataMining.com
Twitter: @RDataMining